The impact of gate length, oxide dielectric materials, and oxide thickness on the GaNNT MOSFETs performance.

  • W. A. Abdul-Hussein Department of Science, College of Basic Education, University of Sumer, 64005, Rifaee, IRAQ

Abstract

The expansion of the integrated circuit industry in recent years has been primarily propelled by the progressive growth of metal-oxide-semiconductor field effect transistors (MOSFETs). The device is employed as a rapid switch in computers advanced. The switching speed of MOSFETs is significantly influenced by the selection of gate length, oxide dielectric materials, and oxide thickness. Gallium nitride nanotubes (GaNNT) with remarkable stability in ambient conditions, making them a promising candidate for use as channel material in the forthcoming era of MOSFET technology. This study utilizes ab initio simulation to examine the device functionality of double-gate (DG) GaNNT MOSFETs sub-  under the impact of gate length, oxide dielectric material, and oxide thickness. The findings suggest that enhancing the gate length and dielectric constant, as well as reducing the oxide thickness, can lead to significant improvements in the ratio of , subthreshold swing (SS), transconductance ( ), power dissipation (PDP), and delay time ( ). The enhancement is notably conspicuous when considering a channel length that is  for devices of n-type. Hence, GaNNT demonstrates significant potential as a channel material in the advancement of complementary MOSFETs that are compatible with both n-type and p-type devices.

Keywords: density functional theory, field effect transistor, gallium nitride, ab-initio simulations

Author Biography

W. A. Abdul-Hussein, Department of Science, College of Basic Education, University of Sumer, 64005, Rifaee, IRAQ

Department of Science, College of Basic Education, University of Sumer, 64005, Rifaee, IRAQ

References

1. P. L. Taylor and O. Heinonen. (2002). A quantum approach to condensed matter physics. Cambridge university press.
2. Y. Taur and T. H. Ning. (2021). Fundamentals of modern VLSI devices. Cambridge university press.
3. B. I. Yakobson and P. Avouris. (2001). Mechanical properties of carbon nanotubes. In Carbon nanotubes: synthesis, structure, properties, and applications (pp. 287-327). Springer.
4. E. Snow, P. Campbell, M. Ancona, and J. Novak. (2005). High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Applied Physics Letters, 86(3), 033105.
5. N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. Dai. (2002). Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Applied Physics Letters, 81(5), 913-915.
6. J. J. Palacios. (2014). Electrons go ballistic. Nature Physics, 10(3), 182-183.
7. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai. (2003). Ballistic carbon nanotube field-effect transistors. nature, 424(6949), 654-657.
8. A. D. Franklin et al. (2012). Sub-10 nm carbon nanotube transistor. Nano letters, 12(2), 758-762.
9. V. V. Pokropivny. (2001). Non-carbon nanotubes (Review). Part 2. Types and structure. Powder Metallurgy and Metal Ceramics, 40, 582-594.
10. D. P. Williams, S. Schulz, A. D. Andreev, and E. P. O'Reilly. (2009). Theory of GaN quantum dots for optical applications. IEEE journal of selected topics in quantum electronics, 15(4), 1092-1103.
11. D. Marti, C. R. Bolognesi, Y. Cordier, M. Chmielowska, and M. Ramdani. (2011). RF performance of AlGaN/GaN high-electron-mobility transistors grown on silicon (110). Applied physics express, 4(6), 064105.
12. J. Goldberger et al. (2003). Single-crystal gallium nitride nanotubes. Nature, 422(6932), 599-602.
13. C. Zhi, Y. Bando, C. Tang, and D. Golberg. (2010). Boron nitride nanotubes. Materials Science and Engineering: R: Reports, 70(3-6), 92-111.
14. M. Zhang, Z.-M. Su, L.-K. Yan, Y.-Q. Qiu, G.-H. Chen, and R.-S. Wang. (2005). Theoretical interpretation of different nanotube morphologies among Group III (B, Al, Ga) nitrides. Chemical physics letters, 408(1-3), 145-149.
15. J. M. Soler et al. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745.
16. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro. (2002). Density-functional method for nonequilibrium electron transport. Physical Review B, 65(16), 165401.
17. S. Datta. (1997). Electronic transport in mesoscopic systems. Cambridge university press.
18. J. P. Perdew, K. Burke, and M. Ernzerhof. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
19. S. Gao and L. Yang. (2017). Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Physical Review B, 96(15), 155410.
20. H. Zhong et al. (2016). Interfacial properties of monolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Scientific reports, 6(1), 1-16.
21. H. J. Monkhorst and J. D. Pack. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.
22. B. C. Mech and J. Kumar. (2017). Effect of high‐k dielectric on the performance of Si, InAs and CNT FET. Micro & Nano Letters, 12(9), 624-629.
23. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. (2003). Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 91(2), 305-327.
24. L. Xu et al. (2022). Device performance and strain effect of sub-5 nm monolayer InP transistors. Journal of Materials Chemistry C, 10(6), 2223-2235.
25. N. Gowthaman and V. M. Srivastava. (2022). Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. Journal of Materials Science, 57(18), 8381-8392.
26. W. A. Abdul-Hussein, F. H. Hanoon, and L. F. Al-Badry. (2023). Designing sub-5 nm monolayer AlP MOSFETs. Micro and Nanostructures, 176.
27. M. Iqbal et al. (2019). Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping. Superlattices and Microstructures, 135, 106247.
28. X. Sun et al. (2018). Sub-5 nm monolayer arsenene and antimonene transistors. ACS applied materials & interfaces, 10(26), 22363-22371.
Statistics
21 Views | 4 Downloads
How to Cite
Abdul-Hussein, W. A. (2023). The impact of gate length, oxide dielectric materials, and oxide thickness on the GaNNT MOSFETs performance. Journal of Integral Sciences, 6(3), 1-7. https://doi.org/10.37022/jis.v6i3.61
Section
Research Article(s)