

Journal of Integral Sciences [JIS]

[An International Open Access Journal]

Available at <u>www.jisciences.com</u> ISSN: 2581-5679

STABILITY INDICATING DISSOLUTION ANALYTICAL METHOD VALIDATION OF VENLAFAXINE IN PELLETS BY UV-SPECTROPHOTOMETER

M. Ganesh¹, M. Dhanamjay¹, M. Venkat¹, V. Sravani¹, P. Sruthipriya¹, P. Saisireesha²

¹B.Pharmacy final year student, Jagan's Institute of Pharmaceutical Sciences, Nellore

²Associate Professor, Dept.of Pharmaceutical Analysis, Jagan's Institute of Pharmaceutical Science, Nellore

Received: 19 April 2023 Revised: 05 May 2023 Accepted: 22 June 2023

Abstract

To develop & validate new dissolution analytical method for venlafaxine in pellets by uv-spectrophotometer Solubility determination of venlafaxine in 0.1N HCl, Determine the absorption maxima of the drug in UV-Visible region in 0.1N HCl, Develop a new dissolution analytical method for venlafaxine in pellets by uv-spectrophotometer, Validate the developed method as per ICH guidelines. The current good manufacturing practices (CGMP) and the Food Drug Administration (FDA) guidelines insist for adoption of sound methods of analysis with greater sensitivity and reproducibility. Therefore, the complexity of problems encountered in pharmaceutical analysis with the importance of achieving the selectivity, speed, low cost, simplicity, sensitivity, specificity, precision and accuracy in estimation of drugs.

Keywords: venlafaxine, UV-spectrophotometer, HCl, CGMP, FDA.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2023 Author[s] retains the copyright of this article.

*Corresponding Author

P. Saisireesha

DOI: https://doi.org/10.37022/jis.v6i2.58

Produced and Published by

South Asian Academic Publications

Introduction

Analytical chemistry

Analytical chemistry is a scientific discipline used to study the chemical composition, structure and behaviour of matter. The purposes of chemical analysis are together and interpret chemical information that will be of value to society in a wide range of contexts. Quality control in manufacturing industries, the monitoring of clinical and environmental samples, the assaying of geological specimens, and the support of fundamental and applied research are the principal applications. Analytical chemistry involves the application of a range of techniques and methodologies to obtain and assess qualitative, quantitative and structural information on the nature of matter.

- Qualitative analysis is the identification of elements, species and/or compounds present in sample.
- Quantitative analysis is the determination of the absolute or relative amounts of elements, species or compounds present in sample.

Structural analysis is the determination of the spatial arrangement of atoms in an element or molecule or the identification of characteristic groups of atoms

(functional groups). An element, species or compound that is the subject of analysis is known as analyte. The remainder of the material or sample of which the analyte(s) form(s) a part is known as the matrix.

The gathering and interpretation of qualitative, quantitative and structural information is essential to many aspects of human end eavour, both terrestrial and extra-terrestrials. The maintenance of an improvement in the quality of life throughout the world and the management of resources heavily on the information provided by chemical analysis. Manufacturing industries use analytical data to monitor the quality of raw materials, intermediates and finished products. Progress and research in many areas is dependent on establishing the chemical composition of man-made or natural materials, and the monitoring of toxic substances in the environment is of ever increasing importance. Studies of biological and other complex systems are supported by the collection of large amounts of analytical data. Analytical data are required in a wide range of disciplines and situations that include not just chemistry and most other sciences, from biology to zoology, butte arts, such as painting and sculpture, and archaeology. Space exploration and clinical diagnosis are two quite desperate areas in which analytical data is vital. Important areas of application include the following.

Quality control (QC) in many manufacturing industries, the chemical composition of raw materials, intermediates and finished products needs to be monitored to ensure satisfactory quality and consistency. Virtually all consumer products from automobiles to

clothing, pharmaceuticals and foodstuffs, electrical goods, sports equipment and horticultural products rely, in part, on chemical analysis. The food, pharmaceutical and water industries in particular have stringent requirements backed by legislation for major components and permitted levels of impurities or contaminants. The electronic industry needs analyses at ultra-trace levels (parts per billion) in relation to the manufacture of semi-conductor materials. Automated, computer-controlled procedures for process-stream analysis are employed in some industries. Monitoring and control of pollutants The presence of toxic heavy metals (e.g., lead, cadmium and mercury), organic chemicals (e.g., polychlorinated biphenyls and detergents) and vehicle exhaust gases (oxides of carbon, nitrogen and sulphur, and hydrocarbons) in the environment are health hazards that need to be monitored by sensitive and accurate methods of analysis, and remedial action taken. Major sources of pollution are gaseous, solid and liquid wastes that are discharged or dumped from industrial sites, and vehicle exhaust gase

Aim

To develop & validate new dissolution analytical method for venlafaxine in pellets by uv-spectrophotometer.

Plan of Work

- Solubility determination of venlafaxine in 0.1N HCl
- Determine the absorption maxima of the drug in UV-Visible region in 0.1N HCl.
- Develop a new dissolution analytical method for venlafaxine in pellets by uv-spectrophotometer
- Validate the developed method as per ICH guidelines. This thesis work comprises of,
- 1. Method of analysis.
- 2. Validation of Assay method (To be done by using following parameters):
 - 1. Specificity
 - 2. System suitability
 - 3. Linearity
 - 4. Precision
 - 1.1 System precision
 - 1.2 Method precision
 - 5. Accuracy
 - 6. Robustness
 - 7. Ruggedness
 - 8. Solution stability

Materials and Methods

Method of analysis

The following standards, samples and reagents are used for validation study

- 1. Venlafaxine working standard (Batch no: SCWS09001), Purity: 99.91
- Venlafaxine pellets 65.0%w/w test sample (Batch no: SEPCB09001)

Reagents

- 1. Hydrochloric acid; Lot no: 9713 6912-5; Make: Qualigens.
- 2. DM water.

Instrument Used

Shimadzu UV-2450 Spectrophotometer contains

- 1. Both reference and sample cells.
- **2.** Output signals and readings were monitored by UV-probe 2.33 version software.

Dissolution conditions

Apparatus : USP Apparatus II (Paddle type)

Sampling interval: 30min

Medium : 900ml of 0.1N HCl

RPM : 100

Temperature : $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$.

Results & Discussion

Validation of Analytical Method

1. Specificity

Sequence for specificity

S.No.	Sample name	Number of Readings
1	Blank	1
2	Placebo solution	1
3	Standard preparation	1
4	Sample preparation	1

Linearity

Sequence for linearity

S.No.	Sample name	Number of Readings
1	Standard solution	1
2	40% Linearity solution	1
3	60%Linearity solution	1
4	80% Linearity solution	1
5	100% Linearity	1
6	120% Linearity	1

Observation

Concentratio	40%	60%	800	100	120
absorbance	0.18	0.28	0.377	0.471	0.565

Acceptance criteria

- Correlation coefficient should be not less than 0.99.
- % y-intercept should be between ±5.0.

2. Precision

Sequence of injections

•	<u> </u>	
S.No.	Sample name	Number of Readings
1	Standard preparation	6

Method precision

Sequence of injections

	,	
S.No.	Sample name	Number of Readings
1	Standard preparation	6
2	Sample preparation 1	1
3	Sample preparation 2	1
4	Sample preparation 3	1
5	Sample preparation 4	1

6	Sample preparation 5	1
7	Sample preparation 6	1

Accuracy

Sequence for accuracy

S.No.	Sample name		Number of
1	Standard pre	paration	1
	4 500/	Preparation-	1
2	Accuracy 50% solution	Preparation-	1
	Solution	Preparation-	1
	4 1000/	Preparation-	1
3	Accuracy 100% solution	Preparation-	1
3	Solution	Preparation-	1
	4 1500/	Preparation-	1
4	Accuracy 150% solution	Preparation-	1
_T	301411011	Preparation-	1

Robustness

Deliberately modified chromatographic conditions

Deliberately modify the actual test conditions specified under the method like buffer preparation.

S.No.	Dissolution media	Actual volume of HCl/lit	Modified volum of HCl/lit-1	Modified volum of HCl/lit-2
1	0.1N HCl	8.5	8.3	8.7

Filter variability

Determine the Dissolution of Venlafaxine pellets by using different filters.

S.No.	Actual method	Differen	t Filters
3.140.	Actual method	Experiment-	Experiment-
1	Whatman Filter	As it is	0.45µ Filter

Ruggedness

Sequence for Intermediate precision

-	-	
S.No.	Sample name	Number of Readings
1	Standard preparation	1
2	Sample preparation 1	1
3	Sample preparation 2	1
4	Sample preparation 3	1
5	Sample preparation 4	1
6	Sample preparation 5	1
7	Sample preparation 6	1

Chemist- II, Day- II

Test sample results

Sample No.	Absorbance	%Dissolution
STD	0.472	
1	0.510	101.66
2	0.508	101.03
3	0.511	101.55
4	0.511	101.70
5	0.510	101.54

6	0.512	102.06
Average		101.59
standard Deviation		0.335
%RSD		0.329

Overall %RSD for method precision

S.No %Dissolution		
1	102.73	
2	102.90	
3	102.01	
4	102.57	
5	102.21	
6	102.53	
7	101.66	
8	101.03	
9	101.55	
10	10 101.70	
11	101.54	
12	102.06	
Average	102.04	
standard Deviation 0.567		
%RSD	0.556	

Acceptance criteria

- The %RSD for six dissolution values should not be more than 5.0.
- The overall %RSD for the dissolution values obtained in method precision and the intermediate precision should not be more than 5.0.

Solution Stability

S.	Tim	%Dissol	%Dissol	%Dissol	%Dissol
No	e inter val	ution (RT)	ution differen ce (RT)	ution (2-8°C)	ution differen ce (2- 8°C)
1	Ineti	101.93	-	101.93	-
2	4 th	106.90	4.88	106.40	4.39

Acceptance criteria

The percentage difference in Dissoltion from initial and at each interval should not be more than ±2.0.

Conclusion

The pharmaceutical analyst plays a major rule in assuring identity, safety, efficacy, purity, and quality of a drug product. The need for pharmaceutical analysis is driven largely by regulatory requirements. The commonly used tests of pharmaceutical analysis generally entail compendia testing method development, setting specifications, and method validation. Analytical testing is one of the more interesting ways for scientists to take part in quality process by providing actual data on the identity, content and purity of the drug products. Pharmaceutical analysis occupies a pivotal role in statuary certification of drugs and their formulations either by the industry or by

the regulatory authorities. In industry, the quality assurance and quality control departments play major role in bringing out a safe and effective drug or dosage form. The current good manufacturing practices (CGMP) and the Food Drug Administration (FDA) guidelines insist for adoption of sound methods of analysis with greater sensitivity and reproducibility. Therefore, the complexity of problems encountered in pharmaceutical analysis with the importance of achieving the selectivity, speed, low cost, simplicity, sensitivity, specificity, precision and accuracy in estimation of drugs.

Funding

No Funding

Conflict of Interest

Authors are declared that no conflict of Interest

Inform Consent & Ethical Considerations

Not Applicable

Author Contribution

All authors are contributed equally.

References

- Robert D.Braun, "Introduction to Chemical Analysis", Mc Graw-Hill Book Co.Singapore, 1982, p 342-345.
- 2. Dr.S.Ravi Sankar, "Text Book of Pharmaceutical Analysis", 5^{th} Edition, R_x Publications, Tirunelveli, 2006, p 13(1)-13(3), 18(8), 18(10).
- 3. HPLC seminar by Jasco international Co., Ltd.
- Lloyd R.Snyder; Joseph J. Kirkland; Joseph L.Glajch, "Practical HPLC Method Development", 2nd Edition, A wiley Interscience Publication, John willey & sons, INC., United States of America, 1997, P 208-210, 685-710.
- 5. United States Pharmacopoeia <1225>
- R.J.Hamilton; P.A.Sewell, "Introduction to High Performance Liquid Chromatography", 2nd Edition J.W.Arrowsmith Ltd., Bristol, Great Britain, 1982, p 42-78.
- A.Pryde; M.T.Gilbert, "Applications of High Performance Liquid Chromatography", 1st Edition, Champman and Hall in association with Methuen, New York, New York, 1980, p 13-19.
- 8. Sathish Mohan B, Seetharam P, Manga Raju I, Suresh P, Satyanarayana G, Sangaraju S, Susmitha U, Tejeswararao D. Nanohybrid material of Co–TiO2 and optical performance on methylene blue dye under visible light illumination. Hybrid Advances. 2022 Dec 1; 1: 100008-16. https://doi.org/10.1016/j.hybadv.2022.100008
- 9. H.Engelhardt, "Practice of High Performance Liquid Chromatography", 1st Edition, Springer-Verlog Berlin, Heidelberg, 1986, p 27.

- Gurdeep R.Charwal; Sham K.Anand, "Instrumental Methods of Analysis", 4th Edition, Shing Hanse, Mumbai, 2006, p 2.624-2.631.
- 11. Holler; Skoog; Crouch, "Principles of Instrumental Analysis", 6th Edition, Baba Barkha Nath Printers, Haryana, 2007, p 818-828.
- 12. HPLC principles by Renk, p 174-182.
- 13. www.ich.org.in.
- 14. British Pharmacopiea -2007, vol-2 pg no:2144.
- 15. http://www.madeinchina.com/2226978/P4941704/ Secnidazole.shtml
- 16. http://www.seqchem.com/safetysheet.php?SQIndex= SRP010965s
- 17. Parajuli D, Susmitha U, Murali N, Ramakrishna A, Suryanarayana B, Samatha K. Synthesis and characterization MXene-Ferrite nanocomposites and its application for dying and shielding. Inorganic Chemistry Communications. 2023 Feb; 148: 110319-33. https://doi.org/10.1016/j.inoche.2022.110319
- SL Baldania1, KK Bhatt, RS Mehta, DA Shah, Tejal R Gandhi. RP-HPLC estimation of venlafaxine hydrochloride in tablet dosage forms. Indian Journal of Pharmaceutical Sciences, Year: 2008, 70, 124-128.
- 19. Aspreet Kaur, KK Srinivasan, Alex Joseph, Abhishek Gupta, Yogendra Singh, Kona S Srinivas, Garima Jain. Development and validation of stability indicating method for the quantitative determination of venlafaxine hydrochloride in extended release formulation using high performance liquid chromatography. Journal of Pharmacy & Bioallied Sciences. 2010(2), 22-26.
- 18. Development and Validation of a Rapid HPLC Assay for the Simultaneous Determination. Journal of Liquid Chromatography & Related Technologies. March 2008, 31 (5), 722-732.
- 21. Nagasree K.L.V, Suryanarayana B, Raghavendra V, Susmitha U, Tulu Wegayehu M, Kavyasri D, Murali N, Raju M.K, Parajuli D, Samatha K. Influence of Mg2+ and Ce3+ substituted on synthesis, structural, morphological, electrical, and magnetic properties of Cobalt nano ferrites. Inorganic Chemistry Communications. 2023 March; 149: 110405-12 https://doi.org/10.1016/j.inoche.2023.110405.Asafu -Adjaye EB, Faustino PJ, Tawakkul MA, Anderson LW, Lawrence XY, Kwon H, Volpe DA. Validation and application of a stability-indicating HPLC method for the in vitro determination of gastric and intestinal stability of venlafaxine. Journal of pharmaceutical and biomedical analysis. 2007 Apr 11;43(5):1854-9.
- 22. He Juan, Zhou Zhiling and Li Huande. Simultaneous determination of fluoxetine, citalopram, paroxetine, venlafaxine in plasma by high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–MS/ESI). Journal of Chromatography B. June 2005, 820(1), 5 33-39.
- 23. Wen Liu, Feng Wang and Huan-de Li. Simultaneous stereoselective analysis of venlafaxine and *O*-

- desmethylvenlafaxine enantiomers in human plasma by HPLC-ESI/MS using a vancomycin chiral column, Journal of Chromatography. May 2007, 850(1-2), 183-189
- 24. Vijaya Bharathi R, Raju M.K, Susmitha U, Raghavendra V, Parajuli D, Suryanarayana B, Yonatan Mulushoa S, Murali N, Samatha K. Cu2+ substituted Mg-Co ferrite has improved dc electrical resistivity and magnetic properties. Inorganic Chemistry Communications. 2023 March 1; 149: 110452-8. https://doi.org/10.1016/j.inoche.2023.110452.
- 25. Rambabu Ch, Susmitha U, Ritesh V, Ramakrishna A, Murali N, Shivanarayana Ch, Parajuli D, Suryanarayana B, Batoo KM, Sajjad H, Lakshmi Narayana PV. Effect of La3+and Ni2+ substitution on Sr1-xLaxFe12-yNiyO19 hexaferrite structural, magnetic, and dielectric properties. Materials Science and Engineering: B. 2023 March; 289: 116257-64, https://doi.org/10.1016/j.mseb.2022.116257.
- 26. Monika Bakshi and Saranjit Singh. Establishment of inherent stability of secnidazole and development of a validated stability-indicating high-performance liquid chromatographic assay method. Journal of Pharmaceutical and Biomedical Analysis. 19 November 2004, 36(4), 769-775.
- 27. Sriram N, Susmitha U, Kavitha R, Someshwaran S, Senthil Kumar B, Prasad PN, Shanta KA. Cognitive Enhancing and Antioxidant Activity Of Ethyl Acetate Soluble Fraction Of The Methanol Extract of Pisonia Alba Leaves In Scopolamine-Induced Amnesia. Journal of Pharmaceutical Negative Results. 2022 Dec. 1 [cited 2023 Feb. 15]; 3740-9. https://pnrjournal.com/index.php/home/article/view/4189
- 28. Purnachandra reddy G, Sriram N, Sarad Pawar Naik B, Kiran Kumar Y, Parameshwar H, Saravanan J, Susmitha U. Formulation and Evaluation of Sustained Release Matrix Tablets Of Glimipride Using Natural Polymers Tamarind Seed Mucilage And Guar Gum. Journal of Pharmaceutical Negative Results. 2022 Dec. 13 [cited 2023 Feb. 15]; 5256-67. https://pnrjournal.com/index.php/home/article/view/4615
- 29. Abdel Fattah M. El Walily, Heba H. Abdine, Omayma Abdel Razak and Saad Zamel. Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets. Journal of Pharmaceutical and Biomedical Analysis. July 2000, 22(6), 887-897.